Fibroblast growth factor-2 inhibits mineralization of osteoblast-like Saos-2 cells by inhibiting the functioning of matrix vesicles.

نویسندگان

  • Chao Liu
  • Yazhou Cui
  • Jing Luan
  • Xiaoyan Zhou
  • Zhenxing Liu
  • Jinxiang Han
چکیده

Fibroblast growth factor-2 (FGF2) inhibits osteoblast mineralization, but the mechanism by which it does so is not fully understood. Matrix vesicles (MVs) play an essential role in the initiation of mineralization, so the current study examined the effect of FGF2 on the functioning of MVs to investigate this mechanism. This study found that FGF2 significantly inhibited differentiation and mineralization of osteoblast-like Saos-2 cells, as indicated by down-regulation of mRNA expression of the osteogenic master regulator runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and collagen 1 alpha 1 (Colla1), and by decreasing the formation of bone nodules. MVs were isolated from Saos-2 cells cultured in osteogenic medium supplemented with and without FGF2 and their presence was verified using electron microscopy and Western blotting. FGF2 markedly reduced the ALP activity of and in vitro mineralization by MVs. These findings suggest that FGF2 inhibits osteoblast mineralization by limiting the capacity of MVs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative proteomics study on matrix vesicles of osteoblast-like Saos-2 and U2-OS cells.

Matrix vesicles (MVs) play an important role in the initial stage of the process of bone mineralization, and are involved in multiple rare skeletal diseases with pathological mineralization or calcification. The aim of the study was to compare the proteomic profiling of osteoblast-like cells with and without mineralization ability (Saos-2 and U2-OS), and to identify novel mineralization-associa...

متن کامل

Water Soluble Components of ‘Osteocare’ Promote Cell Proliferation, Differentiation, and Matrix Mineralization in Human Osteoblast-Like SaOS-2 Cells

Osteocare, a herbal formulation, has been found to be very effective in bone mineralization and support of the microstructure of bone tissue. The water-soluble components of Osteocare (WSCO) induced osteogenic activity in human osteoblast-like SaOS-2 cells. The addition of WSCO (100 μg/ml) to SaOS-2 cells was effective in increasing the cell proliferation by 41.49% and DNA content by 1.9-fold. ...

متن کامل

Effect of human granulocyte macrophage-colony stimulating factor on differentiation and apoptosis of the human osteosarcoma cell line SaOS-2.

We investigated the effects of human granulocyte macrophage-colony stimulating factor (GM-CSF) on the relation between differentiation and apoptosis in SaOS-2 cells, an osteoblast-like cell line. To determine the relationship between these cellular processes, SaOS-2 cells were treated in vitro for 1, 7 and 14 days with 200 ng/mL GM-CSF and compared with untreated cells. Five nM insulin-like gro...

متن کامل

Roles of Kinases in Osteoblast Function

Osteoblasts, as well as osteocytes that are a terminally differentiated form of osteoblasts, are responsible for bone formation by producing bone matrix proteins, which subsequently induce tissue mineralization. Osteoblasts differentiate and mature from their progenitors in response to various regulatory factors including bone morphogenetic proteins (BMPs), Insulin-like growth factor 1 (IGF-1),...

متن کامل

Fibroblast growth factor 2 and forskolin induce mineralization-associated genes in two kinds of osteoblast-like cells.

Fibroblast growth factor 2 (FGF2) and cyclic AMP (cAMP) play critical roles in controlling the differentiation of osteoblasts and mineralization of bone. We have previously reported that each of FGF2 and forskolin (FSK) alone increase transcription of the bone sialoprotein (BSP) gene, and that together (FGF/FSK) they upregulate BSP gene expression synergistically in rat osteoblast-like ROS 17/2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug discoveries & therapeutics

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2014